Program Overview
This C program implements Kruskal’s algorithm to find the Minimum Spanning Tree (MST) of a given connected, undirected graph. The program uses the union-find data structure to efficiently manage the sets of vertices.
Program Structure
- Data Structures:
Edge
structure to represent the edges of the graph.Subset
structure for union-find operations.
- Functions:
find()
– A utility function to find the subset of an element.union()
– A utility function to perform union of two subsets.compareEdges()
– A comparison function for sorting edges.kruskal()
– The main function to execute Kruskal’s algorithm.
C Program
#include
#include
#define MAX 100
typedef struct {
int src, dest, weight;
} Edge;
typedef struct {
int parent, rank;
} Subset;
int find(Subset subsets[], int i) {
if (subsets[i].parent != i) {
subsets[i].parent = find(subsets, subsets[i].parent);
}
return subsets[i].parent;
}
void unionSets(Subset subsets[], int xroot, int yroot) {
if (subsets[xroot].rank < subsets[yroot].rank) { subsets[xroot].parent = yroot; } else if (subsets[xroot].rank > subsets[yroot].rank) {
subsets[yroot].parent = xroot;
} else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
int compareEdges(const void *a, const void *b) {
return ((Edge*)a)->weight > ((Edge*)b)->weight;
}
void kruskal(Edge edges[], int V, int E) {
qsort(edges, E, sizeof(edges[0]), compareEdges);
Subset *subsets = (Subset*)malloc(V * sizeof(Subset));
for (int v = 0; v < V; v++) {
subsets[v].parent = v;
subsets[v].rank = 0;
}
printf("Edges in the Minimum Spanning Tree:\n");
for (int i = 0; i < E; i++) {
int x = find(subsets, edges[i].src);
int y = find(subsets, edges[i].dest);
if (x != y) {
printf("%d -- %d == %d\n", edges[i].src, edges[i].dest, edges[i].weight);
unionSets(subsets, x, y);
}
}
free(subsets);
}
int main() {
int V, E;
printf("Enter number of vertices and edges: ");
scanf("%d %d", &V, &E);
Edge *edges = (Edge*)malloc(E * sizeof(Edge));
printf("Enter edges (src, dest, weight):\n");
for (int i = 0; i < E; i++) {
scanf("%d %d %d", &edges[i].src, &edges[i].dest, &edges[i].weight);
}
kruskal(edges, V, E);
free(edges);
return 0;
}
How to Run the Program
- Copy the code into a file named
kruskal.c
. - Compile the program using
gcc kruskal.c -o kruskal
. - Run the program using
./kruskal
. - Input the number of vertices and edges followed by the edges themselves.
Conclusion
This implementation of Kruskal’s algorithm efficiently finds the Minimum Spanning Tree of a graph using a greedy approach. The union-find data structure ensures that we can quickly find and union sets, making the algorithm effective for larger graphs.