Check if a Linked List is a Palindrome in C++
This C++ program demonstrates how to determine whether a singly linked list is a palindrome. A palindrome linked list reads the same forwards and backwards, much like a palindrome string.
Program Code
#include <iostream>
// Definition for singly-linked list.
struct ListNode {
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
// Helper function to reverse a linked list and return new head
ListNode* reverseList(ListNode* head) {
ListNode* prev = NULL;
ListNode* current = head;
ListNode* next = NULL;
while (current != NULL) {
next = current->next; // Store next
current->next = prev; // Reverse current node's pointer
prev = current; // Move pointers one position ahead.
current = next;
}
return prev;
}
// Function to check if the linked list is a palindrome
bool isPalindrome(ListNode* head) {
if (head == NULL || head->next == NULL) return true;
// Find the middle of the linked list
ListNode *slow = head, *fast = head;
while (fast->next != NULL && fast->next->next != NULL) {
slow = slow->next;
fast = fast->next->next;
}
// Reverse the second half of the list
slow->next = reverseList(slow->next);
slow = slow->next;
// Check palindrome
ListNode* start = head;
while (slow != NULL) {
if (start->val != slow->val) return false;
start = start->next;
slow = slow->next;
}
return true;
}
// Helper function to print the linked list
void printList(ListNode* node) {
while (node != NULL) {
std::cout << node->val << " ";
node = node->next;
}
std::cout << std::endl;
}
int main() {
// Create a linked list: 1->2->2->1
ListNode* a = new ListNode(1);
a->next = new ListNode(2);
a->next->next = new ListNode(2);
a->next->next->next = new ListNode(1);
std::cout << "Original List: ";
printList(a);
bool result = isPalindrome(a);
std::cout << "The list is " << (result ? "a palindrome." : "not a palindrome.") << std::endl;
return 0;
}
Explanation of the Code
The program starts by defining a struct for the linked list node. The isPalindrome
function works by first finding the middle of the list using the fast and slow pointer technique. It then reverses the second half of the list and compares it with the first half. If all corresponding values match, the list is a palindrome.
The reversal and comparison are performed in-place without allocating additional space for another list, making this approach space-efficient. The helper functions included are for reversing the list and printing the list’s contents for verification purposes.
Conclusion
This program efficiently checks if a linked list is a palindrome using a two-pointer technique and by reversing the second half of the list. It demonstrates fundamental concepts of linked list manipulation and is a practical example of space-efficient algorithm design.