Kadane’s Algorithm in C
Kadane’s Algorithm is used to find the subarray with the largest sum in a given array of integers. This algorithm operates in O(n) time complexity, making it very efficient for this problem.
Algorithm Explanation
The idea behind Kadane’s Algorithm is to iterate through the array while keeping track of the maximum sum of the subarray that ends at the current position. This is achieved using two variables:
- currentMax: The maximum sum of the subarray that ends at the current position.
- globalMax: The maximum sum of any subarray found so far.
For each element in the array, we update currentMax as the maximum of the current element and the sum of the current element and the previous currentMax. Then, we update globalMax as the maximum of globalMax and currentMax.
C Code Implementation
#include <stdio.h>
#include <limits.h>
// Function to find the subarray with the largest sum
int findMaxSubarraySum(int nums[], int size) {
// Initialize currentMax and globalMax with the first element of the array
int currentMax = nums[0];
int globalMax = nums[0];
// Iterate through the array starting from the second element
for (int i = 1; i < size; i++) {
// Update currentMax to the maximum of the current element and the sum of current element and currentMax
if (nums[i] > currentMax + nums[i]) {
currentMax = nums[i];
} else {
currentMax = currentMax + nums[i];
}
// Update globalMax if currentMax is greater than globalMax
if (currentMax > globalMax) {
globalMax = currentMax;
}
}
// Return the globalMax which is the largest sum of subarray found
return globalMax;
}
// Main function to test the algorithm
int main() {
// Example array
int nums[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
int size = sizeof(nums) / sizeof(nums[0]);
// Find and print the maximum subarray sum
int maxSubarraySum = findMaxSubarraySum(nums, size);
printf("The maximum subarray sum is: %d\n", maxSubarraySum);
return 0;
}
Explanation of the C Code
In the C code above:
- The function
findMaxSubarraySumtakes an array of integers and its size as input and returns the sum of the subarray with the largest sum. - We initialize
currentMaxandglobalMaxwith the first element of the array. - We iterate through the array starting from the second element. For each element, we update
currentMaxand thenglobalMaxif necessary. - The
mainfunction provides an example array, calls thefindMaxSubarraySumfunction to find, and prints the maximum subarray sum.
Output
For the example array {-2, 1, -3, 4, -1, 2, 1, -5, 4}, the output will be:
The maximum subarray sum is: 6
The subarray with the largest sum is {4, -1, 2, 1} which sums to 6.
